United States Patent

US009420104B1

(12) (10) Patent No.: US 9,420,104 B1
Lintner 45) Date of Patent: Aug. 16, 2016
(54) SYSTEMS AND METHODS FOR AN 5,918,159 A 6/1999 Fomukong et al.
OMNI-CHANNEL ROUTING BROKER 5,963,953 A 10/1999 Crametal.
. . . 6,092,083 A 7/2000 Brodersen et al.
(71) Applicant: z%lseiforce.com, inc., San Francisco, CA 6,161,149 A 12/2000 Achacoso et al.
6,169,534 Bl 1/2001 Raffel et al.
(72) Inventor: Andrew Lintner, Royal Oak, MI (US) g’i;g’gﬁ g} éggg} Eirr(;ld:trijn etal
(73) Assignee: salesforce.com, inc., San Francisco, CA 6,216,135 Bl 4/2001 Brodersen etal.
(US) 6,233,617 Bl 5/2001 Rothwein et al.
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 0 days. Sesum-Cavic, “Applying Swarm Intelligence Algorithms for
(21) Appl. No.: 14/829,347 Dynamic Load Balancing to a Cloud Based Call Center,” Self-Adap-
(22) Filed: Aug. 18,2015 tive and Self-Organizing Systems (SASO), 2010 4th IEEE Interna-
) ’ tional Conference, 2010, <http:/iecexplore.ieee.org/xpl/login.
(51) Int.CL jsp?tp=&arnumber=5630066&url=http%3A%2F%2Ficcexplore.
H04M 3/00 (2006.01) ieee.org%2Fxpls%2Fabs_ all.jsp%3Farnumber%3D5630066>,
H04M 5/00 (2006.01) retrieved Jul. 1, 2015, pp. 2.
HO04M 3/51 (2006.01) (Continued)
HO4L 29/08 (2006.01)
G060 30/00 (2012.01) Primary Examiner — Thjuan K Addy
HO4M 3/523 (2006.01) (74) Attorney, Agent, or Firm — Haynes Beffel & Wolfeld
(52) US.CL LLP; Ernest J. Beffel, Jr.
CPC H04M 3/5191 (2013.01); GO6Q 30/016
(2013.01); HO4L 67/10 (2013.01); HO4L 6724 (57) ABSTRACT
(2013.01); HO4M 3/5232 (2013.01) Omni-channel routing broker technology is usable to
(58) Field of Classification Search improve the experience for customers and for workers using
CPC HO04M 3/5191; HO4M 3/523; HO4M service channels, especially for very large enterprise service
2203/408; HO4M 3/5232; HO04M 3/51; HO4M operation centers that have large pools of agents, helping
3/5175 businesses determine the relative priority for handling a vari-
USPC ... 379/265.09, 265.05, 265.1, 265.11, ety of service channels, and to efficiently route issues accord-
379/266.01, 265.01, 266.08, 266.06, 265.14 ingly. Omni-channel routing broker includes intelligent rout-
See application file for complete search history. ing of service requests in a large, distributed service center
(56) References Cited operation, efficiently prioritizing the routing of work across

U.S. PATENT DOCUMENTS

5,577,188 A 11/1996 Zhu
5,608,872 A 3/1997 Schwartz et al.
5,649,104 A 7/1997 Carleton et al.
5,715,450 A 2/1998 Ambrose et al.
5,761,419 A 6/1998 Schwartz et al.
5,819,038 A 10/1998 Carleton et al.
5,821,937 A 10/1998 Tonelli et al.
5,831,610 A 11/1998 Tonelli et al.
5,873,096 A 2/1999 Limetal.

organizations to agents based on availability, capacity and
priority—in a multi-tenant environment. The disclosed meth-
ods are usable for managing digital data for many tenants to
software instances, including groups of users who share com-
mon access with a specific set of privileges to a software
instance of at least one application. The disclosed technology
makes possible the delivery of an improved performance
from routing 3-4 requests per second to routing 100 requests
per second.

25 Claims, 6 Drawing Sheets

Environmert

US 9,420,104 B1

Page 2
(56) References Cited 8,484,111 B2 7/2013 Frankland et al.
8,490,025 B2 7/2013 Jakobson et al.
U.S. PATENT DOCUMENTS 8,504,945 B2 8/2013 Jakobson et al.
8,510,045 B2 8/2013 Rueben et al.
6,266,669 Bl 7/2001 Brodersen et al. 8,510,664 B2 82013 Rueben et al.
6,295,530 Bl 9/2001 Ritchie et al. 8,566,301 B2 10/2013 Rueben et al.
6,324,568 Bl 11/2001 Diec 8,646,103 B2 2/2014 Jakobson et al.
6,324,693 Bl 11/2001 Brodersen et al. 8,756,275 B2 6/2014 Jakobson
6,336,137 Bl 1/2002 Leeetal. 8,769,004 B2 7/2014 Jakobson
D454,139 S 3/2002 Feldcamp 8,769,017 B2 7/2014 Jakobson
6,367,077 Bl 4/2002 Brodersen et al. 8,867,733 B1* 10/2014 Conway H04M 3/5233
6,393,605 Bl 5/2002 Loomans 379/265.09
6,405,220 Bl 6/2002 Brodersen et al. 9,160,858 B2* 10/2015 Khouri HO04M 3/5232
6,434,550 Bl 8/2002 Warner et al. 2001/0044791 Al 11/2001 Richter et al.
6,446,080 Bl 9/2002 Brodersen et al. 2002/0072951 Al 6/2002 Lee et al.
6,535,909 Bl 3/2003 Rust 2002/0082892 Al 6/2002 Raffel et al.
6,549,908 Bl 4/2003 Loomans 2002/0129352 Al 9/2002 Brodersen et al.
6,553,563 B2 4/2003 Ambrose et al. 2002/0140731 Al 10/2002 Subramaniam et al.
6,560,461 Bl 5/2003 Fomukong et al. 2002/0143997 Al 10/2002 Huang et al.
6,574,635 B2 6/2003 Stauber et al. 2002/0162090 Al 10/2002 Parnell et al.
6,577,726 Bl 6/2003 Huang et al. 2002/0165742 Al 11/2002 Robins
6,601,087 Bl 7/2003 Zhu et al. 2003/0004971 Al 1/2003 Gong et al.
6,604,117 B2 8/2003 Lim et al. 2003/0018705 Al 1/2003 Chen et al.
6,604,128 B2 8/2003 Diec 2003/0018830 Al 1/2003 Chen et al.
6,609,150 B2 8/2003 Lee et al. 2003/0066031 Al 4/2003 Laane
6,621,834 Bl 9/2003 Scherpbier et al. 2003/0066032 Al 4/2003 Ramachandran et al.
6,654,032 Bl 11/2003 Zhu et al. 2003/0069936 Al 4/2003 Warner et al.
6,665,648 B2 12/2003 Brodersen et al. 2003/0070000 Al 4/2003 Coker et al.
6,665,655 Bl 12/2003 Warner et al. 2003/0070004 Al 4/2003 Mukundan et al.
6,684,438 B2 2/2004 Brodersen et al. 2003/0070005 Al 4/2003 Mukundan et al.
6,711,565 B1 3/2004 Subramaniam et al. 2003/0074418 Al 4/2003 Coker
6,724,399 Bl 4/2004 Katchour et al. 2003/0120675 Al 6/2003 Stauber et al.
6,728,702 Bl 4/2004 Subramaniam et al. 2003/0151633 Al 8/2003 George et al.
6,728,960 Bl 4/2004 T.oomans 2003/0159136 Al 8/2003 Huang et al.
6,732,095 Bl 5/2004 Warshavsky et al. 2003/0187921 Al 10/2003 Diec
6,732,100 Bl 5/2004 Brodersen et al. 2003/0189600 Al 10/2003 Gune et al.
6,732,111 B2 5/2004 Brodersen et al. 2003/0204427 Al 10/2003 Gune et al.
6,754,681 B2 6/2004 Brodersen et al. 2003/0206192 Al 11/2003 Chen et al.
6,763,351 Bl 7/2004 Subramaniam et al. 2003/0225730 Al 12/2003 Warner et al.
6,763,501 Bl 7/2004 Zhu et al. 2004/0001092 Al 1/2004 Rothwein et al.
6,768,904 B2 7/2004 Kim 2004/0010489 Al 1/2004 Rio
6,772,229 Bl 8/2004 Achacoso et al. 2004/0015981 Al 1/2004 Coker et al.
6,782,383 B2 8/2004 Subramaniam et al. 2004/0027388 Al 2/2004 Berget al.
6,804,330 Bl 10/2004 Jones et al. 2004/0128001 Al 7/2004 Levin et al.
6,826,565 B2 11/2004 Ritchie et al. 2004/0186860 Al 9/2004 Leeetal.
6,826,582 Bl 11/2004 Chatterjee et al. 2004/0193510 Al 9/2004 Catahan et al.
6,826,745 B2 11/2004 Coker et al. 2004/0199489 Al 10/2004 Barnes-Leon et al.
6,829,655 Bl 12/2004 Huang et al. 2004/0199536 Al 10/2004 Barnes Leon et al.
6,842,748 Bl 1/2005 Warner et al. 2004/0199543 Al 10/2004 Braud et al.
6,850,895 B2 2/2005 Brodersen et al. 2004/0249854 Al 12/2004 Barmnes-Leon et al.
6,850,949 B2 2/2005 Warner et al. 2004/0260534 Al 12/2004 Pak et al.
7,062,502 Bl 6/2006 Kesler 2004/0260659 Al 12/2004 Chan et al.
7,069,231 Bl 6/2006 Cinarkaya et al. 2004/0268299 Al 12/2004 Lei et al.
7,069,497 Bl 6/2006 Desai 2005/0050555 Al 3/2005 Exley et al.
7,181,758 Bl 2/2007 Chan 2005/0091098 Al 4/2005 Brodersen et al.
7,289,976 B2 10/2007 Kihneman et al. 2006/0021019 Al 1/2006 Hinton et al.
7340411 B2 3/2008 Cook 2008/0249972 Al 10/2008 Dillon
7,356,482 B2 4/2008 Frankland et al. 2009/0063415 Al 3/2009 Chatfield et al.
7,401,094 Bl 7/2008 Kesler 2009/0100342 Al 4/2009 Jakobson
7,412,455 B2 8/2008 Dillon 2009/0177744 Al 7/2009 Marlow et al.
7,508,789 B2 3/2009 Chan 2011/0218958 Al 9/2011 Warshavsky et al.
7,603,483 B2 10/2009 Psounis et al. 2011/0247051 Al 10/2011 Bulumulla et al.
7,620,655 B2 11/2009 Larsson et al. 2012/0042218 Al 2/2012 Cinarkaya et al.
7,698,160 B2 4/2010 Beaven et al. 2012/0233137 Al 9/2012 Jakobson et al.
7,779,475 B2 8/2010 Jakobson et al. 2012/0290407 Al 112012 Hubbard et al.
7,851,004 B2 12/2010 Hirao et al. 2013/0212497 Al 8/2013 Zelenko et al.
7,899,177 Bl 3/2011 Bruening et al. 2013/0247216 Al 9/2013 Cinarkaya et al.
8,014,943 B2 9/2011 Jakobson
8,015,495 B2 9/2011 Achacoso et al. OTHER PUBLICATIONS
228%%2(7) g% }ggg“ g{allfgl?:‘f;et al. “Zoo.Kee.per—A Distributed Coordination Sfervice for Distributed
8,082,301 B2 12/2011 Ahlgren et al. Applications,” The Apache Software Foundation, 2008, p. 1-10.
8,095,413 Bl 1/2012 Beaven Salesforce, “Integration Patterns and Practices—Version 34.0, Sum-
8,095,594 B2 1/2012 Beaven etal. mer *15,” @salesforcedocs, 2015, pp. 53.
8,209,308 B2 6/2012 Rueben et al. Salesforce, “Database,” Salesforce.com Help Portal (//help.
8,209,333 B2 6/2012 Hubbard et al. salesforce.com/), 2015, <https://developer.salesforce.com/page/Da-
8,275,836 B2 9/2012 Beaven et al. tabase>, retrieved, Jun. 30, 2015, pp. 5.
8,295,471 B2 10/2012 Spottiswoode et al.
8,457,545 B2 6/2013 Chan * cited by examiner

U.S. Patent

Aug. 16, 2016

<>

Sheet 1 of 6

IS | <>
i Event Queue { Mastar Cluster/A
3 113 I | Database of ;upporf g
B o1y
I Service Data Store
Neode-based Requests 118
Raouting - 114 o
Queues 1-N : ol
12
f |
T !
i] !
PerOrg 1L
Routers 1-N L
142
- i
l i
. Net k
f Eventu*ai!y ifg r
Consistent l | \ T
Node-Based ! E \\
DBS in Memory ! /
142 |
i
[JR—
Request -
Receiver ; e
182 Agents 1-N

Reqgussiors

164

{Service Center 1)

0
H
i

FIG. 1 Environment

US 9,420,104 B1

Master Agents’
Presence and
Status Data
Store 118

Clusters 1-N

App Servers

{Cluster 1)
148

128
|
i
|
m

| Service
Centers 1-N
168
!
e {
{

US 9,420,104 B1

Sheet 2 of 6

Aug. 16, 2016

U.S. Patent

Swney posaNexy 7 OI4

ez
_ ~_
oee Mlllllll/
Buiye - th/ — Bubbo 601 M
o m jsenboy |

UoISINB(L L SPON-TIAN 1senbay
Bunnoy | i Sunnoy \w:......................_ f
810 Jod M P Bumanp
PESIL] 138nbe FASA
aoug pue d Sneng Buepdn i

_ Bune weamy | smelg pue sUopoRISiU

.\ Q22 o\ wEanmmm souRsald sy
Be SPOM-HINA
a0UBSa : 444
BPpON BBUIST oy v\\
/| sseqeep | vz

QI0IG BB
MBI pue
BOUSSBidd
soisepn

[\ eseqeep
[|snEspue
| soussely

\ ,M Riousep-u)

wwwk\,

8ii

&
=

US 9,420,104 B1

Sheet 3 of 6

Aug. 16, 2016

U.S. Patent

oo
(a0}

¢ Dld

—»
3 AN
B
SO O 4 ‘)
N L o O W RO Gl 00 ()
WK o 0 Burpedpey T N suyy fariy Ly PO PE 3
T WMEEEH O - :
0% ol Ho suctpadyy S VO wwe oeRy 40| BA 1
S,
Yy OO By N WO v nedM @l P iWY
v Y /f""""\c\ -
U Ol Supieogaoug) - preg ‘Kol gl pa 3
sas2) O B08 O ,
- o} Swmquny wi ‘dosm oA @l PO [
-) Surymedyowsy spey (O P seuRg @l pG .
— — (3 Bupyoedysey - PUOH WXBIN gy] PG P
w3y O £ =
. ady Fuppredys 01, TROMRAEY @y 1 -
RIPUSY s} apsredyoug — wol, WAty @l pd {7
ST/ BIPUSH usdoy Rurymy S8BT} O) wy eresird gyl pa Wy)
sloziie wpwy wdg Supyg ssanbay (D) T () Aosarag wwel @) pqiva
\,
RIS wiQy Suryg - o wogiumes Aoppird @l PO iWE)
S E— X LIy T,
RIpusy usdy) Fulquioy s wusef urmsedes @l paiwRE)
BIPUSY, usd() suoiirad g Fag uoy @lpaiwy)
RIPUS Y d(y Fauny N iUt SNy @l el .
TIPUS w0y Burdurery NI U0IBOIDOY PUe ¢ Axmp gMEno 3
S107/7/9 wpusy medey Bummrreunoy Nl UOnEaMasy pue eyseg arony ‘ejady 3
HIVa SVIR{V SOLVILS e] L dNIACHd -
1AL 7 TV NG NY N, g N s RIS
JELVANS WINMO | AVET LN VN ALLVLS ANVAWOD YN NOLLDV 7 (3
@ Ta:.ﬁ@ a3 N.L_ ﬁ ST uwcm:mw_ Mﬁsu\.h BDL

BOEE]

AILA MASN AR | ST | 1pT — N

speary ued()y iy -

\mmm

S

-

P

J

sy oY

U.S. Patent

Aug. 16, 2016

Sheet 4 of 6

US 9,420,104 B1

400

@ Ormomi~-Channel

i} Find 4 dashboard...

|1 (Cione W Refresh [=] Asof Today at 13133 AM

Online vs. Away Breskdown

Agent

Productivity

is Away

{1 False {1 True

User-Full Name

Agent¥endra |-
Kaondra 194 {1

Kendra Fumal

Sum of Status Duration (T

1] 26 4.0 6::)

1

is Away
False {3 True

AHET by Queue

ASA by Queue

Cases Queue

Wame

= Qpen Leads

Queue

4

s

cod Lo Angwet (Thousandsy

o

[
Lee)

Serv | Cases e
p o PN wal 16 pdd L
B 2 3 4 2 Cases Quene Maohile Cases Open Leads Servi Cases
Average Handle Time (yueue: Narae
/
{
446

FIG. 4

U.S. Patent

Aug. 16, 2016 Sheet 5 of 6

US 9,420,104 B1

WAl
=

510

Track presence and status of agents
in a master presence and status database

¥

L
fonmt
N

Pablish update events o at least one event quene

v

520

Process selected update and reguest events:

k4

Updatc the node-based ageont presence and status database,
hased on selected events in the event queue

¥

Publish the selected request events
o at least one node-based routing queue

¥

On a single thread per organization sunning on a preccessor having

memory-bus access to the node-based database:

544

545

550

v

Make routing decisions on the requests cvents
using the node-based database

)

Lindate the node-based databage
based on the routing decisions

¥

™ Publish the routing decisions to the event queus

{

Implement the routing decision events:

¥

55!
™ Read the routing decisions from the event quene

A4

N Test the routing decisions for consistency with
the master presence and status database

v

563 N Make consistency-gualificd updates to the

master presence and statos database

Publish updated presence and status events to the event queue

¥l 5 Omni-channel Routing Weorkilow

U.S. Patent Aug. 16, 2016 Sheet 6 of 6 US 9,420,104 B1

LaLy
610
yd
Computer System
Storage Subsystem
539
622~ 626
Memory Subsystem 636)
£ 638
z
632 634 .
N AN File Storage '
ROM RAM Subsystem tiser .lmeri‘“ace Input
Devices
A 650 N
- k4 i a4 o
- A A A -
672 676 o078
v _/ v / v 7
Processor(s) Network Useroterface
QCESSCILS. Interface Outpuat Devices

FIG. 6 Computer System

US 9,420,104 B1

1
SYSTEMS AND METHODS FOR AN
OMNI-CHANNEL ROUTING BROKER

FIELD OF DISCLOSURE

The technology disclosed describes systems and methods
for intelligent routing of service requests in a large, distrib-
uted service center operation—efficiently prioritizing the
routing of work across organizations to agents based on avail-
ability, capacity and priority, in a multi-tenant environment.
The methods disclosed include managing digital data for a
plurality of tenants to software instances, each tenant of the
plurality of tenants comprising a group of users who share a
common access with a specific set of privileges to a software
instance of at least one application.

The technology discloses systems and methods for an
omni-channel routing broker.

INTRODUCTION

Customer service is moving toward a more personalized
1:1 communication with consumers, through the many chan-
nels and on the many devices they use. Omni-channel is a
multichannel approach for providing customers with a seam-
less experience, whether the customer is interacting online
via email, web, short message service (SMS), chat, or live
agent video support on a desktop or mobile device, by tele-
phone, or in a brick and mortar store.

Historically, a series of requests for services have been
stored in a database, as an event sequence—a queue of avail-
able work. Common techniques for routing work from the
queue to agents include the following options: either agents
pull work from the queue and assign it to themselves, or a
supervisor assigns work to agents. Given that companies have
extensive information about their agents—their capabilities,
the amount of work that is waiting, and how much work the
agents already have in their queues—one goal is to intelli-
gently route work to the agents. Methods of prioritizing
include either ‘most available agent’: determining which
agent is most available, based on a difference between their
capacity and the amount of work already in the agent’s queue;
and ‘least active agent’: prioritizing routing of work to an
agent based purely on how much work an agent already has.
Note that two agents can have different capacity amplitudes,
based on various factors, such as number of work hours per
week, amount of work experience, or level of training.

Service channels for contact centers are evolving signifi-
cantly for organizations. In this era of omni-channel, it is
important for a business to determine the relative priority for
handling a variety of service channels, and to efficiently route
issues accordingly.

In a multi-tenant environment, agents are potentially con-
nected to different app servers, generating a need for keeping
work queues synchronized. In order to select a preferred
agent to receive any given piece of work, the system needs to
evaluate the availability of the agents in the org, their queue
membership, their current workload, and the priority of the
work. Making these selections in a multi-tenant environment
with a high load of incoming work is difficult due to the
concurrent nature of the updates made to the variables used to
perform agent selection and the distributed system that
handles these requests. For example, for a routing system that
searches to identify the agent with the least amount of current
work, if two work request cases are pushed into a queue
simultaneously, and we make routing decisions on two dif-
ferent app servers, then we could potentially push both pieces
of work to the same agent, leaving that agent over-burdened.

10

15

20

25

30

35

40

45

50

55

60

65

2

Increasing bandwidth issues accompany routing requests
across app servers, and synchronizing access to shared
resources is a challenging problem that has relatively slow
solutions, with limitations on throughput. Existing technol-
ogy solves the limitation by segmenting contact centers, but a
new approach is needed to allow very large scale service
organizations to utilize a very large pool of agents. Some
approaches break up distributed systems entirely, but with
traffic served by a single app server with agents in an org
connected to it, the size of the app server becomes a limiting
factor.

Speed and efficiency are two of the biggest drivers for
customer service departments. The disclosed technology
delivers an improved performance from routing 3-4 requests
per second to routing 100 requests per second.

An opportunity arises to improve the experience for cus-
tomers and for workers using disclosed omni-channel routing
broker technology, including making it feasible for very large
enterprise service operation centers to have very large pools
of agents.

BRIEF DESCRIPTION OF THE DRAWINGS

The included drawings are for illustrative purposes and
serve only to provide examples of possible structures and
process operations for one or more implementations of this
disclosure. These drawings in no way limit any changes in
form and detail that may be made by one skilled in the art
without departing from the spirit and scope of this disclosure.
A more complete understanding of the subject matter may be
derived by referring to the detailed description and claims
when considered in conjunction with the following figures,
wherein like reference numbers refer to similar elements
throughout the figures.

FIG. 1 illustrates one example implementation of an omni-
channel routing broker environment.

FIG. 2 shows a brokered routing example.

FIG. 3 illustrates a user interface for an open lead interface,
with an agent status window.

FIG. 4 shows an example user interface that displays
agents’ work history.

FIG. 5 shows an example omni-channel routing broker
workflow.

FIG. 6 is a block diagram of an example computer system
for implementing an omni-channel routing broker.

DETAILED DESCRIPTION

The following detailed description is made with reference
to the figures. Sample implementations are described to illus-
trate the technology disclosed, not to limit its scope, which is
defined by the claims. Those of ordinary skill in the art will
recognize a variety of equivalent variations on the description
that follows.

In one implementation, an omni-channel routing broker
system includes selecting an app server among the cluster of
app servers (pod) to perform routing for a given org. Event
handling results are stored in a database, to fulfill a require-
ment of many large organizations for recording permanent
and highly available event logs that enable event tracking,
agent activity tracking, and performance analysis.

A cascading series of queues is used to avoid the reduction
in throughput that would occur if the orgs were routed via a
single thread in a single app server. The disclosed system
separates routing decisions from the work required to commit
routing decisions, delivering improved routing performance
and service for customers.

US 9,420,104 B1

3

Routine Broker Environment

FIG. 1 illustrates an example omni-channel routing broker
environment 100 that includes a request receiver 162 for
handling service requests from a plurality of organizations,
via multiple sources: for example—email, web, SMS, chat, or
live agent video support on a desktop or mobile device, or by
telephone. Each organization has an agent pool disjoint from
the agent pools of other organizations. Agents 1-N 164, at
service center one, complete work requests received at ser-
vice centers 1-N 168. Clusters of app servers 148 serve org
clusters 1-N 128, storing event information and other log data
in cluster/app support data store 116. In some implementa-
tions, organizations operate on a single pod. Clusters of serv-
ers that handle traffic exist as a logical unit sometimes
referred to as a “superpod” which is a group of pods.

An app server among the cluster of app servers 148 is
elected to perform routing for a given org. That app server will
make the routing decisions for the org. A system could have a
single app server for a hundred different orgs. That is, a given
app server can serve many orgs. Each org has one or more
work queues for their organization’s agent pool. Cluster/app
support data store 116 gets updated when agents complete
tasks (i.e. close work) for their organizations.

Omni-channel routing broker environment 100 makes use
of multithreading to manage requests from more than one
user at a time, and to manage multiple requests by the same
user-tracking the presence and status of agents for multiple
orgs. Current presence and status for each agent is stored in
master agents’ presence and status data store 118, and pres-
ence and status update events are published to event queue
113.

Omni-channel routing broker environment 100 in FIG. 1
also includes eventually consistent, in-memory node-based
databases 142, which get updated based on the results of
receiving agent presence and status events from event queue
113. For eventually consistent databases, changes to a repli-
cated piece of data eventually reach the affected replicas. The
master presence and status data store 118 can store agent
presence and status data across agent pools serving multiple
nodes; and the eventually consistent in memory node-based
databases 142—are subsets of the master presence and status
database that is eventually consistent with the master pres-
ence and status data store 118, as a result of processing events
from the event queue.

Per org routers 1-N 122 publish incoming service request
events from the event queue 113 to at least one of the node-
based routing queues 1-N 112. Additionally, routing broker
environment 100 includes a master database of service
requests 114 that provides a permanent record of events,
enabling long-term event tracking and agent performance
analysis.

In other implementations, environment 100 may not have
the same elements as those listed above and/or may have
other/different elements instead of, or in addition to, those
listed above.

The disclosed omni-channel routing broker technology,
described in detail below, evaluates presence and status for
agents, and makes routing selections in a multi-tenant envi-
ronment that handles a high volume of incoming work.

FIG. 2 shows an example brokered routing system. Master
presence and status data store 118 includes data that specifies
the availability and capabilities of each agent. In one example
in which agents service sales leads for an organization, an
agent’s status can include a list of cases in the agent’s queue,

10

15

20

25

30

35

40

45

50

55

60

65

4

an indicator showing availability for a live chat, and a list of
leads being pursued by the agent. Availability can be disabled
or dimmed when the agent selects a lunch or offline setting.
Agent interactions 222 can include logging in, logging out,
completing a task, changing their status such as ‘lunch’ or
‘available for work’, accepting work or closing work, new
work coming in, or a new case created. Request log 232 stores
the service requests generated via multi-node request logging
234.

When an event comes from one of multiple threads on an
app server, the event gets passed to a pool of listeners that
processes the event and determines relevance, makes deci-
sions, and adds a routing request to request log 232, as appro-
priate. Some events do not cause the addition of a routing
request—such as events for orgs not of interest to the
stream—because they require no routing decision. Events of
interest include an agent doing something that changes their
availability for work such as logging in; changing an agent’s
capacity for work such as closing work, etc.; or the addition of
a new work request.

A service request event for an org can be stimulated by an
agent requesting work, or by a service request being routed to
push work to an agent. An example class for routing work
from a pull request is shown below. The code identifies which
queue has the most eligible piece of work to route for an agent
based on priority and time in queue, and routes the pulled
work to the agent.

class PullRouter extends AbstractRunner {
<.>
public void route(PullRequest request) {
RoutableBrokeredAgent agent = request.getAgent();
while (agent.hasCapacity()) {
//Evaluate queue priorities and other business rules to identify the
highest priority work
RoutingResult work = queueRouter.findBestWorkForAgent(agent);
if (work != null) {
// Attempt to route the work and make changes to our local state.
// Note: The actual changes to the data store will be committed
asynchronously. Success here only indicates success
// of the initial attempt.
if (routeTo Agent(agent, work, request, routeRequestHandler)) {
logSuccessfulRoute(agent, work);

}

}else {
//There was no work to route, exit the loop
break;

}

private boolean routeToAgent(RoutableBrokered Agent agent,
RoutingResult work, RoutingRequest request, RouteRequestHandler
routeRequestHandler) {
//Remove the pendingServiceRouting object from our local state
QueuedPsr pst =
routeRequestHandler.getQueuesState().take(work.getWinningItem());
if (psr != null) { //If there was concurrent modification and we lost
this, it’s okay - we’ll come through on the next loop
Queueld queueld = work.getWinningQueue().getQueueld();
long capacitylmpact = agent.getQueueManager().getIm-
pact(queueld);
// Update the local agent state to remove capacity for this pending
work. We’ll later commit this or roll it back.
agent.getWorkManager().consumePending(capacityImpact);
try {
// Enqueue the routing result to be processed asynchronously
routeRequestHandler.addRoutingResult(agent, queueld, psr,
capacityImpact);
return true;
} catch (Exception e) {
logException(e);
agent.getWorkManager().restorePending(capacityImpact);
//Rollback the capacity impact
routeRequestHandler.addAll(Collections.singleton(request));

US 9,420,104 B1

5

-continued

//Add the routing request back to the queue to be retried later

return false;

¥
¥

An implementation of handling a routing result from the
org’s router is shown in the code snippet listed below. If a
problem is encountered during the routing, then the work gets
restored to the queue, and the pending agent’s capacity gets
restored. In one case, if the work is unavailable due to a
concurrent modification, the agent’s capacity gets restored. In
another case, if the agent concurrently modifies their status to
one that should not receive this work, the agent’s capacity
gets restored. In both cases, the routing request gets added
back to the queue to be retried later. Alternatively, if the
routing conditions are successfully met, then the route suc-
cess marker gets activated.

public class RoutingResultHandler {
<.>
public void handleRoutingResult(RoutingRequest request,
RoutingResult result) {
CompletableFuture<WorkRoutedResponse> responseFuture =
executeCustomerValidation(result)
.exceptionally((exception) ->
WorkRoutedResponse.failedExceution(exception))
.thenApply Async(commitToDataStore())
.exceptionally((exception) ->
WorkRoutedResponse.failedExceution(exception))
.thenApply Async(commitToSharedState())
.exceptionally((exception) -> rollbackDataStoreChange(excep-
tion))
.thenAcceptAsync((response) -> {
if (response.failedExceptionally()) {
resyncLocalState(); //Something has become out of sync in an
unexpected way. Re-sync the local state from the shared state.
return;

if (response.result == WORK_UNAVAILABLE) {

//The work was unavailable due to a concurrent modification.
Restore the agent’s capacity and move on
result.getAgent().getWorkManager().restorePending(result.getCapacityIm-
pact());

} else if (response.result == WRONG_AGENT_STATUS) {

//The agent concurrently modified their status to one that
should not receive this work.

// Restore the agent’s capacity and put the work back in the
queue result.getAgent().getWorkManager().restorePending(result.getCa-
pacityImpact()); //Rollback the capacity impact

routeRequestHandler.add All(Collections.singleton(request));
//Add the routing request back to the queue to be retried later

}else {
publish WorkRoutedEvent();
¥
D

Routers may not be constantly running. If a routing request
is the first one in the queue for the particular organization, a
router spin-up request event is generated, which causes spin-
up of a router for a particular org. Per org routing requests are
handled in a non-blocking fashion using the in-memory state
snapshot, in order to quickly return the thread for further
processing.

Multi-node presence and status updating 224 captures
changes in agents’ states, such as the completion of a task, and
provides the changes to the event queue 113.

In one implementation of the disclosed system, a single
router per org runs at any snapshot in time. An advantage of

10

15

20

25

30

35

40

45

50

55

65

6

this single-router-per-org approach is the ability to route
events serially. Single node presence and status updating and
request queuing 228 updates an eventually consistent, in-
memory subset of the master agent presence and status data-
base 218 and at least one in-memory node-based routing
queue 236. Single thread per org routing decision making 238
includes receiving incoming service requests from the node-
based routing queue 236; and making routing decisions on the
incoming service requests using the in-memory subset of the
master agent presence and status database 218. The eventu-
ally consistent, in-memory subset of the master agent pres-
ence and status database 218 gets updated to reflect the rout-
ing decisions; and the routing decisions get published to the
event queue 113.

Implementing the routing decisions applicable to the agent
pools across the multiple nodes includes receiving routing
decisions from the event queue 113, and testing the routing
decisions for consistency with the master agent presence and
status data store 118. Confirming consistency includes look-
ing at the in-memory node-based routing queue 236 and
in-memory presence and status database 218, and determin-
ing whether to roll back the route or to commit the route,
based on whether the master presence and status data store
118 is consistent with in-memory node-based routing queue
236. Consistency-qualified updates are made to the master
agent presence and status data store 118 and updated status
events are published to event queue 113.

For some implementations, validation rules provided by an
organization affect which of the decisions made during single
node presence and status updating and request queuing 228
get applied to routing work, via service requests, to agents.
Customer code can include Apex triggers or validation rules
that affect the ultimate routing decision. For example, some
organizations implement rules for fulfillment of customer
orders and for processing claims made relative to customers’
orders: ‘manager’ level permissions may be required for an
agent who approves service requests that include refunds for
customers.

Once the routing decision has been made; results are stored
in the master presence and status data store 118; customer
code has been executed successtully; and consistency has
been confirmed, then the route is considered committed. The
service request routing the work to that agent is posted to the
event stream, and the agent receives notification that they
have work. The agent ‘listening’ to the event stream learns
that they have work.

In the case of lack of consistency between a particular
routing decision and the master presence and status data store
118, arouting decision rollback event is published to the event
queue 113, and the particular routing decision is not applied
to the master presence and status data store 118. The node-
based database—the in-memory presence and status database
218—gets updated to roll back the routing decision. That is,
if unsuccessful, the state changes are rolled back and the work
is made available for another routing attempt. For example, if
an agent has gone offline during the routing of the request,
then we learn that the agent is not available when we try to
commit the route to the database, so the route will be rolled
back as though it never happened and a new routing request
will be generated.

App servers within a cluster keep a connection open to each
other and ping periodically to be sure they are “up”. In one
implementation, if an app server drops out of the pool, the
remaining distributed processes coordinate with each other
and elect a new app server to serve that org as router. That is,
app server selection can be updated if cluster members

US 9,420,104 B1

7

change over time. A new leader can be elected if the app
server that runs the routing decision maker goes offline.

A distributed commit log can handle hundreds of mega-
bytes of reads and writes per second from thousands of cli-
ents. In one example implementation, a single Apache Kafka
broker can allow a single cluster to serve as the central data
backbone for alarge enterprise organization. The commit log
can be elastically and transparently expanded without down-
time. Data streams can be partitioned and spread over a clus-
ter of machines to allow data streams larger than the capabil-
ity of any single machine and to allow clusters of coordinated
consumers.

An example user interface for a multi-tenant, multi-
threaded omni-channel routing broker system is shown in
FIG. 3. The screenshot shows a webpage that an agent accept-
ing work might view, of Leads known to the organization. In
this case, open leads 321 are listed. Also, a zoom in of an agent
options popup, located in the bottom right corner of the page,
shows agent options 333. As discussed earlier in this appli-
cation, cases, chat leads, SOS (for mobile device support),
lunch, training and offline are options available to the agent.
When a service request has been successfully pushed to the
agent, the requests count will show the addition of a new
request 336. Agents can also set their availability to receive
work and view incoming requests; and can choose to accept
or decline work based on setup for the org, when the widget
flashes or rings.

FIG. 4 shows an example user interface, for data reporting
and analysis, that displays the results of an agent’s work over
time. Data can be gleaned from the master agents’ presence
and status data store 118, and from the request log 232 and
productivity can be displayed. In this example Ul, online
versus away breakdown 422 displays the agent’s data: the
agent was away 4% of the time (based on a sum of status
durations in thousands). Average speed of answer (ASA) by
queue 446 shows average speed to answer for a cases queue,
mobile cases, open leads and sev 1 cases.

While the technology disclosed is disclosed by reference to
the preferred embodiments and examples detailed above, it is
to be understood that these examples are intended in an illus-
trative rather than in a limiting sense. It is contemplated that
modifications and combinations will readily occur to those
skilled in the art, which modifications and combinations will
be within the spirit of the invention and the scope of the
following claims.

Omni-Channel Routine Broker Workflow

FIG. 5 shows an example workflow 500 of one implemen-
tation of an omni-channel routing broker—routing service
requests in a large, distributed service center, across multiple
nodes having disjoint memory spaces. Workflow 500 can be
implemented at least partially with a database system, e.g., by
one or more processors configured to receive or retrieve infor-
mation, process the information, store results, and transmit
the results. Other implementations may perform the steps in
different orders and/or with different, fewer or additional
steps than the ones illustrated in FIG. 5. Multiple steps can be
combined in some implementations.

At action 510, track the presence and status of agents in a
plurality of disjoint agent pools. At action 515, publish update
events to at least one event queue.

At action 520, process selected update and request events,
as described in actions 525 through 550.

At action 525, update the node-based database from the
selected update events; and at action 530, publish the selected
request events to at least one node-based routing queue.

At action 535, on a single thread per organization running
on a processor having memory-bus access to the node-based

10

15

20

25

30

35

40

45

50

55

60

65

8

database: make routing decisions on the requests events using
the node-based database and at action 540, update the node-
based database accordingly. At action 545, publish routing
decision events to the event queue.

At action 552, implement the routing decision events: at
action 555, test the routing decision events for consistency
with a master agent presence and status database; and at
action 555, make consistency-qualified updates to the master
agent presence and status database. At action 570, publish the
consistency-qualified update events.

Computer System

FIG. 6 is a block diagram of an example computer system
600 for implementing an omni-channel broker. FIG. 6 is a
block diagram of an example computer system, according to
one implementation. The processor can be an ASIC or RISC
processor. It can be an FPGA or other logic or gate array. It
can include graphic processing unit (GPU) resources. Com-
puter system 610 typically includes at least one processor 672
that communicates with a number of peripheral devices via
bus subsystem 650. These peripheral devices may include a
storage subsystem 624 including, for example, memory
devices and a file storage subsystem, user interface input
devices 638, user interface output devices 676, and a network
interface subsystem 674. The input and output devices allow
user interaction with computer system 610. Network inter-
face subsystem 674 provides an interface to outside networks,
including an interface to corresponding interface devices in
other computer systems.

User interface input devices 638 may include a keyboard;
pointing devices such as a mouse, trackball, touchpad, or
graphics tablet; a scanner; a touch screen incorporated into
the display; audio input devices such as voice recognition
systems and microphones; and other types of input devices. In
general, use of the term “input device” is intended to include
the possible types of devices and ways to input information
into computer system 610.

User interface output devices 676 may include a display
subsystem, a printer, a fax machine, or non-visual displays
such as audio output devices. The display subsystem may
include a cathode ray tube (CRT), a flat-panel device such as
a liquid crystal display (LCD), a projection device, or some
other mechanism for creating a visible image. The display
subsystem may also provide a non-visual display such as
audio output devices. In general, use of the term “output
device” is intended to include the possible types of devices
and ways to output information from computer system 610 to
the user or to another machine or computer system.

Storage subsystem 624 stores programming and data con-
structs that provide the functionality of some or all of the
methods described herein. This software is generally
executed by processor 672 alone or in combination with other
processors.

Memory 622 used in the storage subsystem can include a
number of memories including a main random access
memory (RAM) 634 for storage of instructions and data
during program execution and a read only memory (ROM)
632 in which fixed instructions are stored. A file storage
subsystem 636 can provide persistent storage for program
and data files, and may include a hard disk drive, a floppy disk
drive along with associated removable media, a CD-ROM
drive, an optical drive, or removable media cartridges. The
software used to implement the functionality of certain sys-
tems may be stored by file storage subsystem 636 in the
storage subsystem 624, or in other machines accessible by the
processor.

Bus subsystem 650 provides a mechanism for letting the
various components and subsystems of computer system 610

US 9,420,104 B1

9

communicate with each other as intended. Although bus sub-
system 650 is shown schematically as a single bus, alternative
implementations of the bus subsystem may use multiple bus-
ses.

Computer system 610 can be of varying types including a
workstation, server, computing cluster, blade server, server
farm, or any other data processing system or computing
device. Due to the ever-changing nature of computers and
networks, the description of computer system 610 depicted in
FIG. 6 is intended only as one example. Many other configu-
rations of computer system 610 are possible having more or
fewer components than the computer system depicted in FIG.
6.

Particular Implementations

In one implementation, a method of routing service
requests in a large, distributed service center includes, across
multiple nodes having disjoint memory spaces, tracking pres-
ence and status of agents in a plurality of disjoint agent pools
and publishing update events to at least one event queue. The
method also includes processing selected update and request
events, including updating the node-based database from the
selected update events, and publishing the selected request
events to at least one node-based routing queue, across one or
more processors that have access to a node-based database
used to track agent presence and status in one or more disjoint
agent pools. The method further includes making routing
decisions on the requests events using the node-based data-
base and updating the node-based database accordingly; and
publishing routing decision events to the event queue—on a
single thread per organization running on a processor having
memory-bus access to the node-based database. The method
additionally includes implementing the routing decision
events, including testing the routing decision events for con-
sistency with a master agent presence and status database; and
making consistency-qualified updates to the master agent
presence and status database and publishing update events
accordingly.

In some implementations of the method of routing service
requests in a large distributed service center, the master pres-
ence and status database stores agent presence and status data
across agent pools serving the multiple nodes; and the node-
based database is a subset of the master presence and status
database that is eventually consistent with the master pres-
ence and status database as a result of processing events from
the event queue. The method further includes processing the
selected update and request events from the event queue; and
on the single thread per organization, reading service request
events from the node-based routing queue.

In one implementation, a method of routing service
requests in a large, distributed service center applies to man-
aging digital data for a plurality of tenants to software
instances, each tenant of the plurality of tenants comprising a
group of users who share a common access with a specific set
ofprivileges to a software instance of at least one application,
wherein each tenant includes one or more of the organiza-
tions.

In some implementations, the method is enhanced by fur-
ther including the distributed service center handling service
requests for a plurality of organizations, each organization
having an agent pool disjoint from agent pools of other orga-
nizations, and having one or more work queues for the orga-
nization’s disjoint agent pool.

The method further includes tracking the presence and
status of agents in the master presence and status database
using multiple threads per node on the multiple nodes; and
updating the node-based database and publishing to the node-
based routing queue using multiple threads.

10

15

20

25

30

35

40

45

50

55

60

65

10

The method additionally includes, in case of lack of con-
sistency between a particular routing decision and the master
presence and status database: publishing a routing decision
rollback event to the event queue and not applying the par-
ticular routing decision to the master presence and status
database; and updating the node-based database to roll back
the routing decision.

In some implementations of the method of routing service
requests in a large distributed service center, the agent pool
serving the organization includes agents working on a plural-
ity of app servers, the method further including: operating a
single thread for routing service requests to the agent pool
serving the organization across the plurality of app servers
used by the agent pool.

In some implementations, the method is enhanced by fur-
ther including an agent pool serving the organization that
includes agents working on a plurality of app servers, geo-
graphically disbursed across pods operating in different data
centers, the method further including: operating a single
thread for routing service requests to the agent pool serving
the organization across the plurality of app servers, geo-
graphically disbursed across pods operating in different data
centers, used by the agent pool.

Other implementations may include a computer imple-
mented system to perform any of the methods described
above, the system including a processor, memory coupled to
the processor, and computer instructions loaded into the
memory.

Yet another implementation may include a tangible com-
puter readable storage medium including computer program
instructions that cause a computer to implement any of the
methods described above. The tangible computer readable
storage medium does not include transitory signals.

While the technology disclosed is disclosed by reference to
the preferred embodiments and examples detailed above, it is
to be understood that these examples are intended in an illus-
trative rather than in a limiting sense. It is contemplated that
modifications and combinations will readily occur to those
skilled in the art, which modifications and combinations will
be within the spirit of the innovation and the scope of the
following claims.

What is claimed is:
1. A method of routing of service requests in a large,
distributed service center, the method including:
across multiple nodes having disjoint memory spaces,
tracking presence and status of agents in a plurality of
disjoint agent pools and publishing update events to at
least one event queue;
across one or more processors that have access to a node-
based database used to track agent presence and status in
one or more disjoint agent pools, processing selected
update and request events, including:
updating the node-based database from the selected
update events; and
publishing the selected request events to at least one
node-based routing queue;
on a single thread per organization running on a processor
having memory-bus access to the node-based database:
making routing decisions on the request events using the
node-based database and updating the node-based
database accordingly; and
publishing routing decision events to the event queue;
implementing the routing decision events, including:
testing the routing decision events for consistency with a
master agent presence and status database; and

US 9,420,104 B1

11

making consistency-qualified updates to the master
agent presence and status database and publishing
update events accordingly.
2. The method of claim 1, wherein:
the master presence and status database stores agent pres-
ence and status data across agent pools serving the mul-
tiple nodes; and
the node-based database is a subset of the master presence
and status database that is eventually consistent with the
master presence and status database as a result of pro-
cessing events from the event queue.
3. The method of claim 1, further including:
processing the selected update and request events from the
event queue; and
on the single thread per organization, reading service
request events from the node-based routing queue.
4. The method of claim 1, wherein the distributed service
center handles service requests for a plurality of organiza-

tions, each organization having an agent pool disjoint from

agent pools of other organizations, and having one or more

work queues for the organization’s disjoint agent pool.

5. The method of claim 1, further including:
tracking the presence and status of agents in the master
presence and status database using multiple threads per
node on the multiple nodes; and
updating the node-based database and publishing to the
node-based routing queue using multiple threads.
6. The method of claim 1, further including:
in case of lack of consistency between a particular routing
decision and the master presence and status database:
publishing a routing decision rollback event to the event
queue and not applying the particular routing decision
to the master presence and status database; and
updating the node-based database to roll back the rout-
ing decision.
7. The method of claim 1, applied to managing digital data
for a plurality of tenants to software instances, each tenant of

the plurality of tenants comprising a group of users who share

acommon access with a specific set of privileges to a software
instance of at least one application, wherein each tenant

includes one or more of the organizations.

8. The method of claim 1, wherein the agent pool serving

the organization includes agents working on a plurality of app

servers, the method further including:

operating a single thread for routing service requests to the
agent pool serving the organization across the plurality
of app servers used by the agent pool.

9. The method of claim 1, wherein the agent pool serving

the organization includes agents working on a plurality of app

servers, geographically disbursed across pods operating in

different data centers, the method further including:

operating a single thread for routing service requests to the
agent pool serving the organization across the plurality
of app servers, geographically disbursed across pods
operating in different data centers, used by the agent
pool.

10. A system of routing of service requests in a large,

distributed service center, the system including:

a processor, memory coupled to the processor, and com-
puter instructions loaded into the memory that, when
executed, cause the processor to implement a process
that includes:

across multiple nodes having disjoint memory spaces,
tracking presence and status of agents in a plurality of
disjoint agent pools and publishing update events to at
least one event queue;

10

15

20

25

30

35

40

45

50

55

60

12

across one or more processors that have access to a node-
based database used to track agent presence and status in
one or more disjoint agent pools, processing selected
update and request events, including:
updating the node-based database from the selected

update events; and
publishing the selected request events to at least one
node-based routing queue;

on a single thread per organization running on a processor
having memory-bus access to the node-based database:
making routing decisions on the requests events using

the node-based database and updating the node-based
database accordingly; and
publishing routing decision events to the event queue;
implementing the routing decision events, including:
testing the routing decision events for consistency with a
master agent presence and status database; and
making consistency-qualified updates to the master
agent presence and status database and publishing
update events accordingly.
11. The system of claim 10, wherein:
the master presence and status database stores agent pres-
ence and status data across agent pools serving the mul-
tiple nodes; and
the node-based database is a subset of the master presence
and status database that is eventually consistent with the
master presence and status database as a result of pro-
cessing events from the event queue.
12. The system of claim 10, further including:
processing the selected update and request events from the
event queue; and
on the single thread per organization, reading service
request events from the node-based routing queue.
13. The system of claim 10, wherein the distributed service
center handles service requests for a plurality of organiza-
tions, each organization having an agent pool disjoint from
agent pools of other organizations, and having one or more
work queues for the organization’s disjoint agent pool.
14. The system of claim 10, further including:
tracking the presence and status of agents in the master
presence and status database using multiple threads per
node on the multiple nodes; and
updating the node-based database and publishing to the
node-based routing queue using multiple threads.
15. The system of claim 10, further including:
in case of lack of consistency between a particular routing
decision and the master presence and status database:
publishing a routing decision rollback event to the event
queue and not applying the particular routing decision
to the master presence and status database; and

updating the node-based database to roll back the rout-
ing decision.

16. The system of claim 10, applied to managing digital
data for a plurality of tenants to software instances, each
tenant of the plurality of tenants comprising a group of users
who share a common access with a specific set of privileges to
a software instance of at least one application, wherein each
tenant includes one or more of the organizations.

17. The system of claim 10, wherein the agent pool serving
the organization includes agents working on a plurality of app
servers, the system further including:

a single thread, for routing service requests to the agent
pool serving the organization, operated across the plu-
rality of app servers used by the agent pool.

18. A tangible computer readable storage medium loaded

with computer instructions that, when executed, cause a com-

US 9,420,104 B1

13

puter system to perform actions that route service requests in
a large, distributed service center, the actions including:
across multiple nodes having disjoint memory spaces,
tracking presence and status of agents in a plurality of
disjoint agent pools and publishing update events to at
least one event queue;
across one or more processors that have access to a node-
based database used to track agent presence and status in
one or more disjoint agent pools, processing selected
update and request events, including:
updating the node-based database from the selected
update events; and
publishing the selected request events to at least one
node-based routing queue;
on a single thread per organization running on a processor
having memory-bus access to the node-based database:
making routing decisions on the requests events using
the node-based database and updating the node-based
database accordingly; and
publishing routing decision events to the event queue;
implementing the routing decision events, including:
testing the routing decision events for consistency with a
master agent presence and status database; and
making consistency-qualified updates to the master
agent presence and status database and publishing
update events accordingly.
19. A tangible computer readable storage medium of claim
18, wherein:
the master presence and status database stores agent pres-
ence and status data across agent pools serving the mul-
tiple nodes; and
the node-based database is a subset of the master presence
and status database that is eventually consistent with the
master presence and status database as a result of pro-
cessing events from the event queue.
20. The tangible computer readable storage medium of
claim 18, further including:
processing the selected update and request events from the
event queue; and
on the single thread per organization, reading service
request events from the node-based routing queue.

10

35

40

14

21. The tangible computer readable storage medium of
claim 18, wherein the distributed service center handles ser-
vice requests for a plurality of organizations, each organiza-
tion having an agent pool disjoint from agent pools of other
organizations, and having one or more work queues for the
organization’s disjoint agent pool.

22. The tangible computer readable storage medium of
claim 18, further including:

tracking the presence and status of agents in the master
presence and status database using multiple threads per
node on the multiple nodes; and

updating the node-based database and publishing to the
node-based routing queue using multiple threads.

23. The tangible computer readable storage medium of

claim 18, further including:
in case of lack of consistency between a particular routing
decision and the master presence and status database:
publishing a routing decision rollback event to the event
queue and not applying the particular routing decision
to the master presence and status database; and

updating the node-based database to roll back the rout-
ing decision.

24. The tangible computer readable storage medium of
claim 18, applied to managing digital data for a plurality of
tenants to software instances, each tenant of the plurality of
tenants comprising a group of users who share a common
access with a specific set of privileges to a software instance
of at least one application, wherein each tenant includes one
or more of the organizations.

25. The tangible computer readable storage medium of
claim 18, wherein the agent pool serving the organization
includes agents working on a plurality of app servers, geo-
graphically disbursed across pods operating in different data
centers, the computer readable storage medium further
including:

a single thread operated for routing service requests to the
agent pool serving the organization across the plurality
of app servers, geographically disbursed across pods
operating in different data centers, used by the agent
pool.

